

# Cormorants and fish populations **DOCUMENTATION OF EFFECTS**

NIELS JEPSEN DTU AQUA, SILKEBORG



**DTU Aqua**National Institute of Aquatic Resources

### Main points:

- 1. Short overview of the development of the cormorant conflict
- 2. Predation studies, coast, lakes, rivers what have we learned?
- 3. Briefly on Danish cormorant management plan

# Documenting the impact of predation:

- Proving things that have happened
- Lack of fish to study
- High variation from year to year
- Effect of capture, handling and tagging
- Statistical confidence in estimates

Funding for studies ??

### Colonies 2016

Current max number of birds: 250.000

Current min number of birds: 15.000



#### Development in breeding stock (pairs) in Denmark 1975-2018



# Who has the problems?

- Pound-net fishers
- Recreational net fishers
- Anglers
- Biodiversity?



Coast:

Eelpout and cod largely disappeared

Documented impact on flounders

Documented impact on eel

Documented impact on salmon

Ringkøbing Fjord



10,000 eel were cw-tagged and released in 2003 and 64.000 CW tagged 1-year salmon were released in Skjern River



4,000 flounders (7 – 20 cm) were caught and cw-tagged in 2004



Pellet collection



Recovery of cw tags from salmon smolts from cormorant pellets collected April through June 2003



### Results from Ringkøbing Fjord 2000 – 2004

Telemetry (2000, 2002): Salmon smolts, 40 - 50 % of tags were recovered from one colony.

CW-tagging (2003, 2004): 25 % of tagged salmon smolts were eaten during the 3-weeks smolt migration period.

40 – 50 % of tagged eel were eaten in one year.

All (100%) of tagged flounders eaten in 15 days

Pellet analyses: 30,000 salmon smolts, 1.4 million flounders, 38,000 eel were eaten.

## Smolt predation by cormorants from Jepsen et al. (in press)

| Year | Number tagged | Species         | Mortality by cormorants (%) | Method             | Source               |
|------|---------------|-----------------|-----------------------------|--------------------|----------------------|
| 1997 | 50            | Wild trout      | 55                          | Radio-telemetry    | Dieprink et al. 2001 |
| 1997 | 50            | Hatchery trout  | 67                          | Radio-telemetry    | Dieprink et al. 2001 |
| 2000 | 17            | Wild trout      | 24                          | Radio-telemetry    | Dieprink et al. 2002 |
| 2000 | 51            | Wild salmon     | 48                          | Radio-telemetry    | Dieprink et al. 2002 |
| 2002 | 51            | Salmon (mix)    | 40                          | Radio-telemetry    | Baktoft 2003         |
| 2001 |               |                 |                             |                    |                      |
| 2003 | 64,500        | Hatchery salmon | 23                          | CW-tagging         | Jepsen et al 2010    |
| 2003 | -             | Salmon (mix)    | > 60*                       | Pellet analyses    | Sonnesen 2007        |
| 2005 | 10,000        | Hatchery salmon | 31                          | CW-tagging         | Jepsen et al 2010    |
| 2005 | 58            | Salmon (mix)    | 53**                        | Acoustic telemetry | Koed 2006            |
| 2005 | 42            | Trout (mix)     | 88**                        | Acoustic telemetry | Koed 2006            |
| 2008 | 4363          | Wild trout      | 45***                       | PIT-tagging        | Jepsen et al. 2014   |
| 2008 | 5009          | Wild trout      | 42***                       | PIT-tagging        | Jepsen et al. 2014   |
| 2010 | 5900          | Hatchery trout  | 72***                       | PIT-tagging        | Thomsen 2013         |
| 2014 | 1400          | Wild trout      | 22***                       | PIT-tagging        | Jepsen et al. 2014   |
| 2016 | 74            | Salmon (mix)    | 42                          | Radio-telemetry    | Unpublished          |
| Mean |               |                 | 47                          |                    |                      |

47% fewer smolts = 47% fewer salmon coming back!

# Not many salmon survive to this size!



## Consumption of fish from the Baltic Sea – kg/km²/year



From Hansson et al. 2017

# Cormorants in rivers – a new phenomenon in DK



Foto: Allan Guido Nielsen



Two cold winters 2009-10 2010-11



Foto: Michael Holm

# Grayling







| Grayling – Omme Å | 2009 | 2010 |  |
|-------------------|------|------|--|
| Number pr. km     |      |      |  |
| Fry               | 147  | 0    |  |
| 1+                | 250  | 5    |  |
| Larger            | 15   | 1    |  |
| Total             | 412  | 6    |  |

Catch of Grayling by electrofishing a 2 km stretch in 2009 og 2010 (Iversen 2010).

# Grayling



Grayling density in 1,5 km stream.

25 grayling (32-36 cm) were radiotagged in October.

River with very few cormorants

Only two tagged grayling survived

A loss of 80% of total fish biomass was estimated





Jepsen et al. 2018



# Trout



| Year | PIT-tagged (N) | Recovered (%) |  |  |
|------|----------------|---------------|--|--|
| 2010 | 650            | 8.5           |  |  |
| 2011 | 1038           | 12.2          |  |  |
| 2012 | 937            | 14.6          |  |  |

PIT-tags from brown trout, recovered at a cormorant roosting site. *Jepsen et al.* 2018



### Predation on lake fish?







#### PIT studies of lake fish

## More than 1000 PIT tags were found in one colony 13-20 km away

|       | Loldrup Lake |      |      | Vib  | Viborg Lakes |      |  |
|-------|--------------|------|------|------|--------------|------|--|
|       | 2005         | 2007 | 2008 | 2009 | 2008         | 2009 |  |
| Roach | 19%          | 32%  |      | 17%  | 30%          | 24%  |  |
| Bream | 11%          |      |      |      | 33%          | 33%  |  |
| Perch | 41%          |      |      | 46%  | <b>70%</b>   | 45%  |  |
| Pike  |              |      | 33%  | 30%  |              |      |  |

Minimum estimates (Skov et al. 2014)

### Perch



Larger perch are more vulnerable







#### **Conclusion:**

Impact on fish populations in Rivers, Lakes and coast.

Documentation (by different methods) that predation from cormorants is now the *main regulating factor* for many fish stocks.

#### Effects include:

- Economic loss (commercial and recreational fishing)
- Cultural loss
- Biodiversity loss
- Problems in reaching WFD requirements

# Management

Ministry of Environment

Cormorant-group: Stakeholders, managers, experts

National cormorant management-plan since 1997:

- •Egg oiling
- Prevention of new settlements
- •Protective Shooting (fishers and hunters)
- •Regulation outside breeding season in rivers

# Adaptive management

- MP provides the framework
- Loss in poundnets fishermen were permitted to shoot cormorants at nets (1000 m)
- Loss of smolts anglers were permitted to shoot cormorants during smolt migration
- Cormorants foraging in the rivers protective shooting was initiated
- Continued problems in rivers permission to shoot at night roosting sites



Permissions granted to regulate (shoot) in rivers











17 years after start, we have app. 2000 nests in 2018

- Despite much effort conflicts still remain high
- No clear effects of regulation
- High immigration rate
- A common EU plan would help management



Thank you

- Dieperink, C., Pedersen, S. & Pedersen, M.I. (2001). Estuarine predation on radiotagged wild and domesticated sea trout (*Salmo trutta* L.) smolts. *Ecology of Freshwater Fish* 10, 177–183.
- Dieperink, C., Bak, B.D., Pedersen, L., Pedersen, S. & Pedersen, M.I. (2002). Predation on Atlantic salmon and sea trout during their first days as postsmolts. *Journal of Fish Biology* 61, 848–852.
- Koed, A., Baktoft, H. & Bak, B. D. (2006). Causes of mortality of Atlantic salmon (*Salmo salar*) and sea trout (*Salmo trutta*) smolts in a restored river and its estuary. *River Research and Applications* 22, 69–78.
- Jepsen, N, Sonnesen, P., Klenke, R. & Bregnballe, T. (2010). The use of coded wire tags to estimate cormorant predation on fish stocks in an estuary. *Marine and freshwater Biology* 61, 320-329.
- Skov, C., Jepsen, N., Baktoft, H., Jansen, T., Pedersen, S. & Koed, A. (2014). Cormorant predation on PIT-tagged lake fish. *Journal of Limnology*.
- Jepsen, N, Ravn, H.D. & Pedersen, S. (2018). Change of foraging behavior of cormorants and the effect on river fish. *Hydrobiologia*, 820, 189-199.
- Jepsen, N,. Flavio, H. & Koed, A. (in press). The impact of Cormorant predation on Atlantic salmon and Sea trout smolt survival. *Fisheries management and ecology*.

#### **Human - Wildlife Conflicts in Europe**

Fisheries and Fish-eating Vertebrates as a Model Case

Series: Environmental Science and Engineering

Klenke, R.A.; Ring, I.; Kranz, A.; Jepsen, N.; Rauschmayer, F.;

Henle, K. (Eds.). 1st Edition., 2013, 50 illus.